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Abstract

In the computer literature, a lot of problems are described that can be called discrete
optimization problems: from encrypting information on the Internet (including creating
programs for digital cryptocurrencies) before searching for “interests” groups in social
networks. Often, these problems are very difficult to solve on a computer, hence they
are called “intractable”. More precisely, the possible approaches to quickly solving these
problems are difficult to solve (to describe algorithms, to program); the brute force solution,
as a rule, is programmed simply, but the corresponding program works much slower.

Almost every one of these intractable problems can be called a mathematical model. At the
same time, both the model itself and the algorithms designed to solve it are often created
for one subject area, but they can also be used in many other areas. An example of such
a model is the traveling salesman problem. The peculiarity of the problem is that, given
the relative simplicity of its formulation, finding the optimal solution (the optimal route).
This problem is very difficult and belongs to the so-called class of NP-complete problems.
Moreover, according to the existing classification, the traveling salesman problem is an
example of an optimization problem that is an example of the most complex subclass of
this class.

In this paper, we describe several variants of algorithms for generating source data for the
traveling salesman problem. We consider both the classical heuristics associated with the
branch and bound method, and some added to them. Next, we present a software imple-
mentation of our interpretation of the algorithm. At the end of the paper, we formulate
some tasks for further research, so the paper can be a project for students’ scientific work.

Keywords: optimization problems, traveling salesman problem, heuristic algorithms,
branch and bound method, real-time algorithms, C++.
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1. INTRODUCTION

The paper discusses the application of the branch and boundary method (BBM) to the solu-
tion of the traveling salesman problem (TSP). At the same time, in addition to the classic version,
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some new heuristics are also considered, related to the need to develop real-time algorithms.
More precisely, we consider such real-time algorithms that have the best (at the moment) solu-
tion at each specific moment of operation, and the user can view these pseudo-optimal solutions
in real time, and the sequence of such solutions in the limit gives the optimal solution.

In addition, considering the example of the implementation of the algorithm of BBM for TSP
we shall consider the implementation of discrete mathematics algorithms using object-oriented
programming, and possibly the general approach to such an implementation

In this abridged version of the paper, we do not provide such possible sections:

— about different versions of generating input data for TSP;
— the description of our implementation of the classic version of BBM;
— about implementing auxiliary classes.

However, of course, the additions to the classic version of BBM and the implementation of the
main classes are described in full.

For the implementation, we use the C++ language; this is the language that, without a doubt,
“will take a clean first place” by any natural “complex criterion”, including the following:

— first of all, of course, the ability to use object-oriented programming;

— the ease of design of complex data structures and the ability to use data abstraction;

— ease of implementation of algorithms, which are intended for working with discrete math-
ematical objects, for optimization problem:s, etc.;

— beautiful, clear, and transparent recording of the source code of programs;

— the efficiency of the resulting code of executable programs;

— the possibility of a small change in the program text, when changing (and sometimes sig-
nificantly) the implemented algorithm;

— availability of translators and related development environments;

— convenience (“friendliness”) of translators.

Of course, there are other single criterion “rating leaders”, but we mean a “complex criterion”.

When discussing the implementation of complex algorithms in discrete mathematics, it is im-
portant to note the following. Even very good books on algorithmization, including [4], have one
common flaw; it can be briefly described as an insufficient description of the relevant programs
“for real conditions”, first of all for large dimensions. For example (but not only), we are referring
to memory allocation and deallocation issues when working with very large dimensions. If the
translator is responsible for memory allocation, then the executed code becomes significantly
less efficient. This is confirmed comparison of the running time of complex programs written
in different programming languages, in particular, programs for BBM for TSP considered in this
paper. Therefore, we believe that the programmer should take care of allocating and freeing
memory. And this is most convenient, apparently, also in C++.

There are many problems described in the literature that can be called discrete optimization
problems; they are used in various fields of practical activity. Often these tasks are very difficult
to solve on a computer, hence the name “intractable”. More precisely, the possible approaches
to the effective solution of these problems are difficult to solve (description of algorithms, pro-
gramming); but the bulky solution (brute force method), as a rule, is programmed simply. On the
other hand, almost every such intractable problem can be called a mathematical model; at the
same time, both the model itself and the algorithms designed to solve it are often created for one
subject area, but they can also be used in many other areas. An example of such a task (such a
model!) is TSP ([1-3] etc.). The peculiarity of the problem is that with the relative simplicity of its
formulation, finding the optimal solution it is very complex and belongs to the so-called class of
NP-complete problems. Moreover, according to the classification given in [3] etc., the traveling
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salesman problem is an example of an optimization problem that is part of the most complex
subclass, i.e., the NPO(V) subclass.

Our goal is to discuss the implementation of the branch
and bound method; the implementation of this method has
alot in common for a wide variety of discrete optimization
problems, and we consider it on the example of TSP.

Here is the formulation of this problem. Given a com-
plete graph (we shall usually consider directed graphs, “di-
graphs”) of N vertices. Each its edge is marked with a non-
negative number, we will always consider only integers.
The task is to find a loop that passes through all N vertices
of the graph, and this loop should have the lowest possible
cost (the sum of the marks of its edges). An example of the
input data (note that it is taken from [2]) is shown on Fig. 1,
and the corresponding matrix representation is shown on
Fig. 2.

Let us go back to the algorithms. The traveling salesman 1 2 3 4 5
problem, like most discrete optimization problems, can still 999 25 40 31 27
be solved by the brute force method, but usually without § 999 17 30 25
much success. That is why the complicated algorithms are 19 15 988 6 1
required for TSP, and the branch and bound method is one 9 50 24 999 6
of them. It consists of several related heuristics —and in the 22| 8 | 7110999
monograph literature, such a “multiheuristic’ BBM was ap-
parently not previously noted. At the same time, the method
itself can be applied-with very few changes, i.e., to many other discrete optimization problems.

Figure 1. Source data

N oW -

Figure 2. Source data, the matrix

2. MODERN ADDITIONS TO THE CLASSICAL APPROACH:
ANYTIME ALGORITHMS AND THE RIGHT TASKS SEQUENCE

At the beginning of this section, we shall give a few words about so called anytime algorithms.
They are real-time algorithms that have the best (at the moment) solution at each specific mo-
ment of operation, the user can view these pseudo-optimal solutions (also in real time), and the
sequence of such solutions gives usually in the limit the optimal solution.

Apparently, more detailed definitions are not needed. But here is a possible example of the
practical application for such anytime algorithms; this example, by the way, is suitable for any
difficult problem. Thus, let us estimate the time to complete the entire task in 3 months, and
the customer (the boss, the user) wants to get at least some acceptable solution much sooner; of
course, it is desirable that it is more or less close to the optimal one. To say, he wants to obtain
the first solution after 1 hour of the program. If the total time to complete the entire task is
significantly more than 1 hour, then some solutions that are close to optimal begin to be obtained
“almost” in 3 months, to say, in 2 months and 28 days. What should we do? That is why we should
use some additional heuristics, which give even a “more distant” solution. (comparing the usual
BBM), but very quickly. One of these heuristics (in fact, a modifications of BBM) is the use of
so-called 1-trees. The other is so-called right tasks sequence (RTS), see Fig. 3.

This heuristic is as follows. Each time we select the next separating element in some subtask
(let it be T; we can also say “when getting the next right problem”) we actually construct such a
sequence when applying the heuristic:

COMPUTER SCIENCE 43



Melnikov B. F., Melnikova E. A.

left subtask of the task T right subtask of the task T

left subtask of the right
subtask of the task T

right subtask of the right
subtask of the task T

C/‘\) trivial task

Figure 3. The right tasks sequence (the grey color shows the subtasks that are included in the list of sub-
tasks for further solution)

— task T itself,

— the right (sub)task of the task T,

— the right task of the right task of the task T,

— etc.

Certainly, each time the corresponding left problems are constructed (and included in the list of
problems for potential solution in the future):

— the left task of the task T,

— the left task of the right task of the task T,

— etc.

The described process ends:

— either when obtaining a trivial problem (for example, a zero-dimensional problem): in this
case, we remember its solution (the boundary, the tour received at the time of its setting,
and other characteristics) as a pseudo-optimal solution of the current time of the anytime
algorithm;

— or when we get a sufficiently large boundary in any problem, for example, greater than
the pseudo-optimal solution available at a given time.

Note that in practice, the described process of building a RTS does not take much extra time and
does not lead to a large increase of the list of tasks intended for potential solutions in the future.

Thus, we have described a simple process of constructing an anytime algorithm based on
some specific variant of the BBM,; it is in fact the truncated branch-and-bound method. Next, we
shall consider the order of iterating through the subtasks, which differs from the one proposed
in [2]; this order follows from the algorithm for constructing the RTS given in the previous section.
But in order to have something to compare it with, we shall use the same example of the given
matrix (Fig. 2). We note that this example is interesting in this way: the optimal solution in it is
not where it was initially expected (i.e., not in the set of tours that is initially considered as “more
promising”).

Below, we shall denote the arising tasks as follows:

— “base”: the given task will be denoted by € (empty word);

— “step”: if some problem is denoted by X, then the left and right subtasks that arise from it
are denoted by X, and X; respectively.

Thus...
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Task &: let us repeat source 123 als 12 3 als
data in some modified format. 1(999 25 40 31 27 1999 0 15 3 2|25
The next step, of course, co- 2|5 999 17 30 25 2| 0 999 12 22 20| 5
incides with the one discussed 3 (19 15999 6 1 3|18 14999 2 0|1
in [2]. We still have only one sub- 419 15024999 6 413 44 18 99 06
task, and we need to rank “ze- 5 2.8 7 1099 Sl 1.0 0997
0 3 0+47=47
ros” for it, calculated their bad-
ness by [2]. We denote these val- Figure 4. Source data, task £
ues b;j, the indices coincide with the indices of zeros:
b12:2+1:3, b21:12+3:15, b35:2+0:2,
b45=3+0=3, b53:0+12=12, b54:0+2:2.
Thus, the best zero corres- 1 2 3 4 5 1 2 3 4 5
ponds to the element of the ma- 1 (999 0 15 3 2 11(999 0 15 3 2
trix with coordinates (2,1), and 2 |999 999 12 22 20 2999999 0 10 8 |12
based on this element, we form 3 |18 14 999 2 0 3115/14/999 2 | O
the first branching of BBM; after 413 9418199 0 1101441181991 0
. . 5(15 1 0 0 999 5(12 1 0 0 999
it, we get the following tasks 0 a7 3 2741562

and 1. As we see, for the task 1,
we can give one matrix only: no
reduction is required for it, since each row and each column already has a zero. (However, we
do not obtain “a large loop” for now; this is most easily explained by the fact that in the first
row only one element is equal to 0, and this element, together with the previously selected one,
would form “a small loop”).

Starting from this point, the execution of the BBM goes “on a new path”, which differs
from [2]: we, regardless of anything, make the branching of the problem 1, it is the beginning of
the construction of the RTS.

Figure 5. Task 0

Let us continue this construction. To generate tasks 10 and 23/ 4|5
11 (as shown in Fig. 3, they are included in RTS), we must rank ; 1[; ;g‘r’g ; s
the zeros of the 1 problem. We shall use the badness notation b; a |42 18 995 o
for all matrices (similar to the notation used above); note that the s| 10 0 logo
indexes i and j are the row and column numbers of the given ma- a7
trix shown in the figures to the left and top of the current matrices. Figure 6. Task 1
Thus,

b12=2+1=3, b35=2+0=2,
b45=18+0=18, b53=0+15=15, b54=0+2=2,

and we select an element with indexes (4, 5) for branching. Both the resulting 10 and 11 problems
are shown in the following Fig. 7:

2 3 4 5 2 3 4 5 2 3 4 2 3 4
10 15 3 2 10 15 3 2 1|0 15 3 10 15 3
3 14 999 2 O 3 (14 999 2 O 3 |14 999 2 3 12 999 0 | 2
4 | 44 18 999 999 4 |26 0 999 999/ 18 5/1 0 O 5/1 0 0O
51 0 0 999 51 0 0 999 47 47+2=49
47 47+18=65

Figure 7. Task 10 (two matrices on the left) and task 11 (two matrices on the right)
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Let us continue building RTS. Now, we need to rank the zeros in the 11 problem, and we get
the following:

bi,=3+1=4, bys=12+0=12,
b53=0+15=15, b54=0+0=0.

For branching, we select co- 2 3 4 2 3 4 2
ordinates (5,3); the problems 1|0 15 3 1|0 15 3 1|0 3
110 and 111 resulting from 3 [12 999 0 12 999 0 3|12 0
this branching are given on 5[ 1 999 0 1 999 0 49

49 15 49+15=64

Fig. 8. In the 111 problem, fur-
ther branches are meaningless.
Both zeros of the matrix of this
problem form “the small loops”, therefore, the current pseudo-optimal solution is formed by its
non-zero elements, which, together with the zeros already selected earlier in the process of con-
structing RTS, really form the current pseudo-optimal solution. Its cost is 64 (see figure), and the
loop is as follows:

Figure 8. Task 110 (two matrices on the left) and task 111

1-4—-5—-3—-2-1.

The remaining unprocessed subtasks are 0, 10, and 110. Among them, we choose the problem
0 as having the smallest boundary 62 (in problems 10 and 110 the ones are 65 and 64). The
next calculations are “not interesting”: this bound corresponds to the answer, since there exists
a sequence of zeros forming “a big loop”:

1-2—-3—-5—-4-—1.

The cost of this loop is less than all available limits, which makes it possible to stop further calcu-
lations.

3. GENERAL REMARKS ON THE PROGRAM, ITS DATA STRUCTURES AND ALGORITHMS

Aswe noted in the introduction, we try to use object-oriented features that are convenient for
describing algorithms for solving mathematical problems, in particular, discrete optimization
problems.

Let us go to the description of the organization of the whole program. In contrast to the fact
that for the illustration of BBM is usually depicted in drawings, we do not use tree structures to
organize the program, but we still have the tree in mind. In reality, instead of a tree, we store
a list of its leaves only, and we “violate the ordering rules”, which for the elements of this list
can be derived according to [2]; see more detailed Section 5. However, any natural ordering algo-
rithm can be considered as a special heuristic, and, apparently, only a practical study of program
execution time can give an answer to the question which of these heuristics is better.

Formally, the leaves of the above-mentioned tree are most convenient to store as an array of
pointers to subtasks; but, of course, other structures are possible (a list of such pointers, etc.). Of
course, we need to consider an array with a dynamically changing dimension. There will appear
“very many” subtasks (to say, up to 500000 with the dimension of the problem about 100), so it
is natural to place the data in dynamic memory.

Now the general work of our program becomes clear. First (“the basis” of the algorithm),
based on the input data (which is just a matrix), a task is formed, containing the array of subtasks;
initially, this array consists of one subtask only (it describes this input). However, each subtask
is not only the matrix itself, but also some following additional information:
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— the dimension of the (sub)task;

— the bound (0 for the initial subtask);

— row and column numbers of the subtask matrix (for the initialized subtask, they are from
1 to the dimension);

— the full information about already built part of the path (see also below, Section 4).

Secondly (“the step” of the algorithm):

1) we choose a task from the array (usually the first one);
2) if we do not need to finish it right away (i.e., usually in the case when its dimension is “not
very small”), then:
a) we select the separating element in it;
b) we are trying to divide the selected task for this element on the left and right subtasks;
c) if we managed to make such a division, then we form these subtasks, after that we
include them “back” in the list;
3) otherwise, if we need to finish it right away, then:
d) we finish it; we also get the current solution, as well as the corresponding tour;
e) we compare the obtained solution with the current pseudo-optimal one;
f) possible, we replace the current pseudo-optimal solution and the corresponding tour
with new ones.

Itis all! (Thisis the end of the informal description of the algorithm; and the end of its execution
is an empty array of subtasks, i.e., the inability to perform sub-step 1.)

Next, we go to the direct description of the program, we give most of its text. First, we give
the general constants for all functions and classes:

const int DIM ALL = 99; // the total dimension of the whole problem
const int DIM ARR SUB = 200000; // dimension of array of pointers to subtasks
const int INFTY = 999999; // infinity for assignment
const int PEREBOR = 2; // 1f the dimension is less or equal,

// then we use brute force method
const int TURBO = 6; // 1f the dimension is less or equal, then we

// include in the beginning of array of subtasks
const int MAX VALUE = 999; // the maximum possible value of the matrix

Some of these constants are obvious (and the comments given in the program text are sufficient),
but some other are still not completely clear.

DIM_ARR_SUB is the dimension of the array of subtasks (more precisely, pointers to subtasks).
The array is stored in RAM, we do not save it to disk for simplicity. To get the results of computa-
tional experiments, we used the value 200000, see Section 6.

PEREBOR; the meaning of this constant seems to be almost completely clear from a small com-
ment in the program text. If the dimension is less than or equal to this constant, then a complete
search (brute force method) is performed to solve the subtask; otherwise, it is the usual execu-
tion of the next step of BBM. In our program, the simplest option is installed, PEREBOR = 2, but
readers should also try larger values if they want to (however, apparently, no more than 6). This
should be offset by faster execution of the entire program.

TURBO; if the dimension is less than or equal to this constant, then we include the task imme-
diately after its forming in the array, not in order of the border values, but at the beginning. This,
among other things, makes it possible to implement as a very simple version of the construction
of RTS, so are some other heuristics.
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4. CLASS FOR SUBTASKS

Auxiliary classes are omitted in the description of the program; if necessary, we shall com-

ment their use. This section describes in detail the class for the subtask, i.e., the most important
and most complicated class of this project.

Elelass SubTask {

private:
int nDim; // dimension of this subtask
int nGran; // boundary of this subtask

Numbers* Lin; // line numbers
Numbers* Col; // column numbers

int* Matr; // the elements themselves!
Path* Next; // the next city in the "already built™ path
Path* Prev; // the previous city in the "already built™ path

In the first picture, only its fields are shown. We do not need to comment on most of them

(everything is clear on the basis of the above, the names of the fields themselves, as well as small
comments in the program text); we shall give such ones only:

— the Next array is used to get a permutation of cities (often for pseudo-optimal solutions):

if we go from the city I to the city J (i.e. we have established the need for such a trip), then
we assume Next[I]=J;

— the Prev array is used for receiving the reverse permutation (to the permutation Next): if

we go from the city I to the city J, then we assume Prev[J]=1I.

Note once again, that the tree is “missing” in all classes! Both in this program and in similar

ones, we storey its current leaf vertices onl. All this will need to be implemented in the main class
Task. We shall look at this class further, but to understand the meaning of the SubTask class and
its objects, it is desirable to know this information now.

Let us continue with the description of the SubTask class. Our implementation contains the

following methods (see the figure). Comments to them are as follows.

private:

int MakeIndex(int nX, int n¥) { return (nX-1)*nDim + (n¥-1); }
void InitMemoryMatrix() { Matr = new int[nDim*nDim]; }

public:

SubTask (int nDim); // only memory allocation without wvalue initialization
SubTask (int* Matr); // initialization based on existing elements (nDimAll)
~SubTask () ;

int GetLin(int I) { return Lin->Get(I); }

int GetCol(int J) { return Col->Get(J); }

void SetGran(int N) { nGran = N; }

int GetGran() { return nGran; }

int GetDim() { return nDim; }

void Set(int nI, int nJ, int N) { Matr[MakeIndex(nI,nJ)] =
int Get(int nI, int nJ) { return Matr[MakeIndex(nI,nJ)]:; }
friend ostream& operator<<(ostream& os, SubTask& st);

N; }

private:
int MinLin(int nX) ; // minimum in string
int MinLinDva(int nX); // second by minimality in string
int MinCol (int nY¥Y); // minimum in column
int MincColDva(int nY); // second by minimality in column
bool SetInftyByNumbers(int III, int JJJ); // setting "inverse infinity"

The second constructor SubTask(int* Matr) works only once (when initializing the en-
tire task); and when generating a new subtask, we do not call it (see below for details). Of
course, we usually initialize this first subtask using data taken from some text file; howe-

48

© COMPUTER TOOLS IN EDUCATION. Ne2, 2022



On the classical version of the branch and bound method

ver, there is only this data, i.e., elements of the matrix, and not all the elements of the

subtask (and therefore we do not use stream input).

* MinLinDva() searches for the second smallest element in the string (this is necessary for
the “optimal zero selection” option, see [2]); similarly for the column.

* SetInftyByNumbers(); with other implementations, this method may not be necessary;
it sets infinity according to the row and column numbers of the original matrix (available
in the number arrays), but not by the row and column numbers of the subtask matrix.

We omit the implementation of several simple methods. The rest will be considered in the
same order as in the above description.

SubTask: :SubTask (int nDim) {

}

this

->nDim = nDim;

InitMemoryMatrix() ;

Lin
Col
Next
Prev

= new Numbers (nDim) ;
= new Numbers (nDim) ;
new Path;
new Path;

To the first constructor, apparently, additional comments are not needed.
Now the second constructor:

EHSubTask: : SubTask (int* Matr) {
this->nDim = nDimAll;
InitMemoryMatrix() ;

finity to prevent the formation of a “small loop™:

bool subTask::SetInftyByNumbers(int III, int JJJ)

nGran = 0; // we have not calculated it yet

Lin
Col

= new Numbers (nDimall) ;
= new Numbers (nDimall) ;

Next = new Path; Next->InitNull();
Prev = new Path; Prev->InitNull () ;

for

}

(int i=1; i<=nDimAll; i++) {
Lin->Set(i,i) ;
Col->set(i,i);

for (int j=1; j<=nDim; j++) Set(i,]j,Matr[MakeIndex(i,j)1):
// from the parameter Matr to the field Matr

Reduction() ;

o

About the parameters of the constructors. Since the first constructor will be called constantly
(each time a new subtask is generated-except for the very first one), the dimension to be set is
unknown in advance, it is passed as a parameter of this constructor. on the contrary, the dimen-
sion is the maximum possible; as we have already noted, it is given by the dimension constant
of the starting problem. For the Matr parameter, we use the MakeIndex() function, which was
not originally intended for this type.
Let us continue to describe methods of SubTask class. SetInftyByNumbers() is setting in-

int

nX = Lin->GetByNumber (JJJ) ;

if (nX<=0) return false;

int

nY¥ = Col->GetByNumber (III) ;

if (n¥<=0) return false;

set

(nX,n¥ nInfty) ;

return true;

{ // in the reverse order

COMPUTER SCIENCE
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It is important to note the following:

— only one value oo is set, without the use of additional algorithms: they will already belong
to the classes described below;

— the parameters are passed “in the right order” (row, then column), but used “in reverse
one”: that is right, because we use setting the value oo for an element that is symmetric with
respect to the main diagonal of the original matrix to the element under consideration;

— parameters are numbers of initial matrix, so we use the special function GetByNumber ().

Let us continue to describe the methods (see below). The comments are as follows.

void ReductionLin(int nX); // reduction by row
void ReductioncCol (int nY); // reduction by column
void Reduction() ; // first by rows, then by columns
bool BestNull (int& nXdel, int& n¥del) ;
SubTask* MakeRight (int nXdel, int n¥del);
// deleting nXdel and n¥del; we also modify ourselves for the left task!
int Solve (Path¥*& Otvet);
// we call for small dimensions only (uising PEREBOR);
// Otwvet: the answer; a new object is created!

* Reduction() is reducing string elements by a constant, see [2].

* BestNull() is selecting “the best zero”, see also [2].

* MakeRight() is apparently the most important method of the whole project; by the speci-
fied (previously selected) zero, it constructs the right subtask (generating it by calling the
constructor and returning a pointer to it); after that, it modifies itself for the left subtask.

* Solve() is final solving a small-dimensional problem (after that, the resulting tour value
will be compared with the current pseudo-optimal one, but this will already be done in the
Task class); note in advance that we shall not give the text of the method, some explana-
tions were already given when describing the general constants of the program.

Next is again the implementation.

Hvoid SubTask::ReductionLin(int nX) {
int Min = MinLin (nX) ;
if (Min==0) return;
= for (int j=1; j<=nDim; j++) {
if (Get(nX,j)>=INFTY/2) continue;
Set (nX, j,Get (nX,j) -Min) ;
5 }
nGran += Min;

For the reduction, apparently, no comments are needed, but the text of one such function we
have given.

int Max = -1;
for (int i=1; i<=nDim; i++) for (int j=1; j<=nDim; Jj++) {
if (Get(i,j)>0) continue;
int nnn = MinLinDva (i) + MinColDva(]j)
if (nnn<=Max) continue;
Max = nnn;
nXdel = i; n¥del = j;

ibool SubTask: :BestNull (int& nXdel, int& n¥Ydel) {

- }
return Max >= 0;

o
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Thus, BestNull() is the algorithm for selecting “the best zero” and returning the found
pair of coordinates using the parameters; it is implemented exactly according to [2]. It is very
important that the coordinates returned “like in the matrix“ (i.e., their possible values are from
1 to its dimension nDim), instead of “as in the original matrix” (i.e., from 1 to the maximum
possible dimension DIM_ALL).

Now we turn to the most important method. “By and large” we can say, that this method is
the most important for the whole approach to implementing BBM (for any discrete optimization
problem, not just for TSP).

The text of this method is “very long” (which is understandable: we need to perform many
different actions that are not related to each other), so we are again “dividing it into parts” in
the figures. Just note that we shall return the constructed subtask using the Return pointer, and
therefore we immediately use the new operator for it. Below, is the beginning of the method text.

Here and further in comments, we indicate the creation of the right subtask by point 1; it
consists of several sub-items, i.e., auxiliary algorithms, which in the comments are entitled 1a,
1b, ..., 1f. The code below shows only the simplest auxiliary actions needed to create the right
subtask, they do not need additional comments.

HSubTask* SubTask::MakeRight(int nXdel, int n¥del) {

// 1) first, "from scratch", constructing the right subtask
SubTask* Return = new SubTask(nDim-1);

Return->SetGran (nGran) ;

// la) installation the numbers of strings and columns

=] for (int i=1; i<=nDim; i++) {

if (i==nXdel) continue;

int iNew = i<n¥del ? i : i-1;

Return->Lin->Set (iNew,Lin->Get (i)) ;

=] for (int j=1; j<=nDim; Jj++) {

if (j==n¥del) continue;

int jNew = j<n¥del ? j : j-1;
Return->Col->Set (jNew,Col->Get (J)) ;
3 }

// 1b) installation the values

=] for (int i=1; i<=nDim; i++) {

if (i==nXdel) continue;

int iNew = i<n¥Xdel = i : i-1;

= for (int j=1; j<=nDim; j++) {

if (j==n¥del) continue;

int jNew = j<n¥del ? j : j-1;
Return->Set (iNew, jNew,Get(i,])) ;

Next are more complicated actions, see the figure below. On it, sub-item 1c does not require
comments, and sub-item 1d is the fact that in the right subtask, a trip between the selected pair
of cities becomes mandatory. But the cities were selected by the row/columns numbers of the
current matrix, so we select these numbers from the corresponding arrays Lin and Col. Next,
we ut in the arrays Next and Prev the following city for the number IIT and the previous city
for the number JJJ.

Subitem 1e is a call to set the replacement to infinity of the “impossible” zero; that is, one at
which the corresponding movement is impossible due to the formation of a “small loop”. And
subitem 1f is a search for all such “impossible” zeros that are obtained as a possible closure of
“small loops” (the corresponding auxiliary algorithm is missing in [2]); however, this auxiliary
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// 1lc) installing old paths
Return->Next->InitCopy (Next) ;
Return->Prev->InitCopy (Prev) ;
// 1d) setting a new movement in them
int III = Lin->Get (nXdel), JJJ = Col->Get (n¥Ydel) ;
Return->Next->Set (III,JJJ);
Return->Prev->Set (JJJ,III);
// le) setting the "inverse infinities"™ (combined with the following point)
// 1f) possible setting "further inverse infinities™
if (nDim>=3) { // ignore this sub-item if dimension of subproblem is small
int JJJJJT = JJIJT;
for (;;) {
if ('Return->SetInftyByNumbers(III,JJJJJ)) break;
JJJJIJT = Return->Next->Get (JIJJJIJT) ;
if (JJJJ3J<=0) break;

int IIIII = III;

for (;;) {
if ('Return->SetInftyByNumbers(IIIII,JJJ)) break;
IIIITI = Return->Prev->Get (IIIII);
if (IIIII<=0) break;

algorithm can be dispensed with, since the absence of “small cloops” is automatically checked
before considering the solution as acceptable and checking it for pseudo-optimality, see more in
the Task class.

// 1lg) reduction (here, it is the complete one)
Return->Reduction() ;

// 2) now, we make the left subtask from "ourselves”
Set (nXdel,n¥Ydel,nInfty) ;

ReductionLin (nXdel) ;

ReductionCol (nYdel) ;

// 3) end of function description

return Return;

Everything given on this fragment of the MakeRight () function should not cause additional

questions. The actions here are as follows:

— first, sub-item 1g: reduction of the obtained right subtask;

— secondly, sub-item 2: the record of “ourselves” as the left subtask;

— thirdly, also sub-item 2: reduction of the resulting left subtask by the row and the column;
in this case, there exist the only row and the only column, besides their numbers are al-
ready known.

Next (see figure below), a simple description of the solution of a small-dimensional problem

is given. We repeat that we only consider a very simplified version, that is, we only solve the
problem to the end if its dimension does not exceed 2. At the same time, no more than 2 variants

of

cycles are possible; we check them to select the best one.

int SubTask::Solve (Path*& otvet) { // the simplyfied version, for nDim==
Otvet = NULL;
if (nDim>nPerebor) return nInfty;
int I1 = Lin->Get (1), I2 = Lin->Get(2), J1 = Col->Get(l), J2 = Col->Get(2);
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if (Next->Get(I1l)!'=0 || Next->Get(I2)!'=0 ||
Prev->Get (J1) !'=0 || Prev->Get(J2)!=0) return nInfty;
// 1st variant of the loop
int suml = Get(1,1) + Get(2,2);
// 2nd variant of the loop
int sum2 = Get(1,2) + Get(2,1);
if ((suml > nInfty/2) && (Sum2 > nInfty/2)) return nInfty;
Otvet = new Path;
Otvet->InitCopy (Next) ;
int Sum = this->GetGran();
if (Suml<=Sum2?) { Otvet->Set(I1l,Jl); Otvet->Set(I2,J2); Sum += Suml; }
else { otvet->set(Il1l,J2); Otvet->Set(I2,J1); Sum += Sum2; }
return Sum;

However, the above-mentioned simplification does not affect the basic actions required to
perform more complex versions of the function (i.e., with an arbitrary value of the constant
PEREBOR), namely:

— the comparisons of all resulting cycles,
— choosing the best of them,
— after that, return:

the cost of the best loop, “by the usual way”,
this loop, by the parameter.

5. CLASS FOR THE MAIN TASKS

First, let us consider “the interface part”, see the next figure.

Elelass Task {

“};

private:

int* Matr; // elements of the given(!) matrix, dimension is DIM ALL
int nKol; // the current number of subtasks
SubTask* Zadachi[DIM_pRR_SUB];

// array of pointers to subtasks, indexing is "usual"™ for C
int nOpt; // the cost of the current pseudo-optimal solution
Path* pOpt;
Rezults rez;

public:

Task() ; // with the memory initialization

~Task() ;

void ReadFile(int Nomer); // the number of the file; we fill in *Matr only

void InitRnd() ;

void InitFirst(); // the whole task (containing 1 subtask) is initialized

// (but not the matrix only)

friend ostream& operator<<(ostream& os, Taské& t);

SubTask* ExtractFirst() ;

bool SolveSubTask (SubTask*& st) ;

bool AddSubTask (SubTask* st, bool bSimple); // 1f bSimple, including by #0
// returning false occurs if there is an overflow of array of subtasks!
// (but not in the case when we did not include the next subtask)

void DelTail (int gran); // delete subtasks starting from this bound and more

void Run() ;

Apparently, the fields are clear. Let us start the description of the headers of some methods
“from the end” (from top to bottom). Run( ) executes the whole solution. To do this, we first create
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an array of a single subtask (which is either entered from a file or initialized randomly), written
to the array of subtasks. After that, we make the loop: we select the first subtask, extracting it
from the array (in it, the tasks usually are ordered in ascending order of the boundary), and
try to solve it using the methods of the SubTask class. In the case of a new solution (which, by
the way, can not be called pseudo-optimal), we compare the cost of the tour with the existing
pseudo-optimal one; if successful, we change corresponding pseudo-optimal solution and tour.

ETask: :Task() {

Matr = new int[DIM ALL*DIM ALL];
nKel = 0;

nopt = INFTY;

pOpt = new Path;

o

ETask: :~Task() {
delete[] Matr;
delete pOpt:

o

We gave the obvious constructor and destructor, and the task initialization is as follows:

void Task::InitFirst() {
nKeol = 1;
Zadachi[0] = new SubTask (Matr);
nopt = INFTY;
popt->InitNull();

Next, extracting the subtask from the array and returning it (everything is also simple):

SubTask* Task: :ExtractFirst() {
if (nKol<=0) return NULL;
SubTask* Return = Zadachi[0];
for (int i=l1; i<=nKol; i++) Zadachi[i-1] = Zadachil[i];
nKol--;
return Return;

Next, everything related to the completion of the subtask:

Ebool Task::SolveSubTask(SubTask*& st) {
Path* otv; // "*otv" must be deleted!
int nSolve = st->Solve(otv) ;

= if (nSolve >= nInfty/2) {

if (otwv!=NULL) delete otv;
return false;

5 }

=] if (nSolve < nopt) {

nopt = nSolve;
pOpt->InitCopy (otv) ;

DelTail (nSolve) ;
5 }
delete otv;
return true;

-}

Some comments are as follows.

rez.NewOpt () ; // we noted that the step gave new pseudo-optimal solution
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 Is it necessary to finish solving the subtask? We do not solve this here; here, we simply
perform such a final solution.

* In the current version, the option of passing the SubTask* st parameter is possible, but
we consider the option, which is also suitable for the more general case.

» If we get at least some solution (not necessarily the new current pseudo-optimal one), then
we return true; at the same time, at the “calling” level, this fact will be a sign that we can
forget about the calling subtask.

* Aswe see from the method text, in the case when we still get a new current pseudo-optimal
solution, we replace the associated fields of our class.

 Calling rez.NewOpt () marks in the rez object the number of the step, at which this
psudo-optimal solution was obtained; then, after the end of the whole process of solving
the problem, we shall know the number of the last of these steps. (In general, the use an
object of this class will become clear based on Section 6.)

The following figure shows adding a subtask to an array. Such comments are required:

Ebool Task::AddSubTask(SubTask* st, bool bSimple) {

if (SolveSubTask(st)) return true; // there can be no overflow of the array!
int nNewGran = st->GetGran() ;

if (nNewGran >= nopt) { delete st; return true; } // similarly

// checking, whether we can increase the number of subtasks:

if (nKol>=nDimArrSub) return false;

int IndNew = 0; // index for inserting a subtask

= if ('bsimple) for (int i=0; i<nKol; i++) { // can we change this index?
if (nNewGran <= Zadachi[i]->GetGran()) break;

IndNew = i+1;

r }

for (int i=nKol; i>IndNew; i--) Zadachi[i] = Zadachi[i-1];

nKol++;

Zadachi [IndNew] = st;

return true;

» The problem to be solved is passed “on the pointer” by the first parameter.

¢ In the case when after the end of the method execution, we no longer need the subtask,
we delete it using destructor. Otherwise, we include it back in the array of subtasks, i.e.,
the corresponding pointer “does not disappear”. Thus, in any scenario, there will be no
«holes» in the dynamic memory.

* The already considered AddSubTask() method returns true if and only if after its execu-
tion, the array of subtasks did not overflow (i.e., the method was completed successfully).
In particular, in the case of solving a subtask, there can be no such overflow.

* Loop, notrunning if the corresponding response to the condition check if (!bSimple),is
perhaps the most important heuristic; as computational experiments show, it significantly
improves the overall solution time compared to [2]. Sometimes (if, for example, the desired
dimension has already been reached), the task must be added first!

* Almost the same statements are used for building RTS.

Method DelTail() is much simpler; it removes all the subtasks that have too large bounds.
And the main method of the class (the “interface” one)is Run().Init,MakeRight () is called, after
which the resulting subtasks are processed. Note that the second parameter, which is always
equal to the value true when calling the processing function for the resulting right subtask,
shows the version of constructing RTS.
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void Task::Run() {

for (;;) {

SubTask* ST1 = ExtractFirst();
int I,J; if (!'ST1->BestNull(I,J))

{ cout << endl << "UNEXPECTED END" << endl; break; }
cout << "founding a pair: " << ST1->GetLin(I) << " " <<
8T1->GetCol (J) << " (numbers of the given matriz)" << endl;

SubTask* ST2 = ST1l->MakeRight(I,J):;
if ('AddSubTask(ST1, (ST1l->GetDim()<=nTurbo)))

cout << "FAILED TO SAVE SUBTASE" << endl;
if ('AddsubTask(ST2,true))

cout << "FAILED TO SAVE SUBTASE" << endl;
rez.NewIter(nKol); // a new iteration has passed

// with (possibly) a new maximum number of subtasks
cout << *this << endl;
if (nKol>0) continue;
cout << rez;
cout << endl << "THE END" << endl; break;

6. CONCLUSION. ON SOME RESULTS OF COMPUTATIONAL EXPERIMENTS

In this paper, we used a simple version of computational experiments. Here are the charac-
teristics of the processor on which the computational experiments were carried out:

Intel(R) Core(TM) 17-8700 CPU @ 3.20GHz.

For the calculations, we used three dimensions (55, 80, and 99). The maximum possible value
of the number of subtasks was always set to 200000. The optimal solutions could be lost, but it
is intuitively clear that increasing the number of subtasks by just 2 times for such dimensions
and under our time constraints (see below) will make it possible to almost always get the best
solutions. For each variant, we ran some computational experiments and recorded the following:

the time of the complete solution in seconds; a limit of 3 hours was set which the program
never exceeded; the column “time” below in the tables;

the solution (it is unlikely to be of much interest); the column “solution” below in the tables;
number of iterations (i.e., selections of the first subtask from the array); the column “iter-
ations” below in the tables;

maximum number of subtasks (which, according to the above, did not exceed 200000); the
column “subtasks” below in the tables;

the number of the iteration at which the last pseudo-optimal solution was obtained; the
column “optimum” below in the tables.

Dim=55 solution  iterations  subtasks optimum time
maximum 1766 56125 8058 8828 5,06
mediane 1580 12464 1634 2579 1,06
minimum 1494 7153 1034 52 0,742

Dim=80 solution  iterations  subtasks optimum time
maximum 1899 1595697 200000 871150 2267
mediane 1656 1240244 189998 116248 945
minimum 1523 108552 12385 77 18,7

56

© COMPUTER TOOLS IN EDUCATION. Ne2, 2022



On the classical version of the branch and bound method

Dim=99 solution  iterations  subtasks optimum time
maximum 1717 1874022 200000 1050808 8642
mediane 1585 1573722 200000 48316 5356
minimum 1467 321360 38475 96 95,2

All the values we needed were fixed in the Rezults class, which we mentioned above. We
also recorded the maximum number of subtasks that were marked. For each of the characteris-
tics listed above, we specify the maximum, median, and minimum values in the tables above.

To results of these tables, we add the following. For the dimension 55, we can guarantee that
we have obtained the optimal solution in 100% of cases (since the value of the number of subtasks
200000 has not been reached once). For the dimension 80, such “guaranteed” cases were about
60%, and for the dimension of 99 were about 30 %. The obtained exact values of this value (the
percentage of “guaranteed” cases) are hardly interesting: we have already noted that for “non-
guaranteed” cases, the optimal solution is most likely always obtained, and with small additions
to the program, this fact could be said with confidence.
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AHHOTaUMA

B koMnbloTepHOl AnTEpaType onmMcaHo MHOro NpobneM, KOTopble MOXHO Ha3BaTb 3aja-
Yamy ANCKPETHOW ONTUMK3aLMK: OT WudposaHus nHdopmMaLmm B IHTepHeTe 40 nowncka
rpynn no MHTepecam B COLMaNbHbIX ceTAX. Takme 3a4a4mn O4eHb C0XHO peLlaroTcs Ha KoM-
NbloTEPEe 1 Ha3bIBAOTCA «TPYAHOPeLLaeMbIMU». TOUHee, CI0XHO OMUCbIBaTb BO3MOXHbIe
NoAxo/bl K peLeHnio 3T!x Npobsiem; Npy 3TOM NPOrpamMmbl, OCHOBAHHbIE Ha MOJIHOM
nepebope BapnaHTOB, Kak NPaBua0, MPOrpaMMIMpPYLOTCS MPOCTO, HO paboTatoT 3HaUn-
TeAbHO MegsieHHee. [oYTn KaXayto 13 3STUX TPYAHOpa3peLLMbIX 33434 MOXHO Ha3BaTb
MaTemaTu4eckoin Mogenbto. Mprmep — 3agava koMMUBosixxepa. OcobeHHOCTb NpobaemMbl
B TOM, YTO HECMOTPS Ha OTHOCUTENbHYHO NPOCTOTY €€ GOpPMYNNPOBKHM, MONCK ONTUMAIb-
HOTOo peLueHns (ONTUMaNbHOro MapLUpyTa) AOCTaTOYHO CAOXeH. 3Ta 3aja4a oO4eHb TpPyAHa
N OTHOCUTCA K Tak Ha3biBaeMoMy knaccy NP-MoaHbIX 3ajay, OHa ABASETCS MPUMepoM
ONTVMU3ALMNOHHON 334a4n N3 CAMOr0 CI0XHOr0 NoAKAacca 3Toro knacca.

B cTaTbe onuncbiBaeTCs HECKONbKO BapuMaHTOB anropnutMoB GOPMMPOBAHNA NCXOAHBIX
JaHHbIX ANS 33341 KOMMUBOSXKEPA, PacCMaTPUBAOTCA KakK Knaccuyeckme sBpucTuki,
CBfI3aHHbIE C METOAOM BeTBeli 1 rpaHunL, Tak 1 HeKoTopble A0MoNHeHUs K HUM. Janee
npeAcTaBneHa NporpaMmmHas peanvsauns Halleli MHTepnpeTauuy anropmTMa, npeanoxe-
HO HEeCKONbKO 3aaY AN AaNbHelLero nccneAoBaHms, NO3TOMY CTaTblo MOXHO CYMTaTb
onmncaHveM NpoekTa ANs Hay4YHol paboTkl CTyAeHTOB.

KnroueBble cnoBa: onTyMU3ayMoHHbIe 334a4u, 3a4a4a KOMMWBOSXKePa, 3BpUCTn4eckme
a/irOpyTMbl, METO4 BeTBEi U rpaHuL, airopuTMbl peaslbHoro BpeMeHwu, C++.
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